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I n t e r n a t i o n a l R e v i e w s i n P h y s i c a l C h e m i s t r y , 1997, V o l . 16, N o . 2, 177± 199

Coupled-channel calculations of excited-atom collisions

by A. P. HICKM AN

Department of Physics, Lehigh University, Bethlehem, PA 18015 , USA

Recent calculations of excited-atom collisions based on the coupled-channel

formalism are reviewed. Such calculations of electronic excitation processes require

additional information (such as radial coupling matrix elements) beyond the
adiabatic potential surfaces normally provided by ab-initio electronic structure

calculations. Several examples are discussed that illustrate various strategies for

obtaining this additional information. The ® rst example involves collisions of
heavy atoms, particularly xenon. In this case, the inner-shell electrons exhibit

relativistic eŒects, and the eŒects of the spin± orbit operator can be quite large. In

addition, the open-shell core has non-zero spin and orbital angular momentum.
For these collisions the inner-shell electrons are treated using eŒective core

potentials, and a model Hamiltonian is developed to handle the large spin± orbit

eŒects and the open-shell core. The second example involves collisions in which the
target atoms are spatially aligned. These calculations required radial coupling

terms as well as the determination of explicit state-to-state cross-sections between

speci ® c angular momentum states. These examples demonstrate that collisions of
a high level of complexity can now be quantitatively treated.

1. Introduction

For many years the coupled-channel (or close-coupling) method has been the

standard for the most accurate and reliable scattering calculations. Because the

method is based on a direct solution of Schro$ dinger’ s equation, the accuracy of the

results achieved is limited only by the accuracy with which one can determine the

potential surfaces and coupling terms for the particles involved in the collision. The

method can been applied to electron± atom, electron± molecule, atom± atom, atom±

molecule and molecule± molecule collisions. As the power of quantum chemistry

computer codes has advanced, it has become possible to calculate ab-initio electronic

potential surfaces and coupling matrix elements of greater reliability and for larger

and more realistic systems.

There is an important contrast between rotational or vibrational excitation and

electronic excitation processes. In the former case, the adiabatic ab-initio potential

surface provides su� cient information for a coupled-channel dynamics calculation

(unless, of course, excited electronic states play a role). In contrast, if electronic

excitation is important, it is necessary to have potential surfaces for all important

electronic states, as well as the coupling terms between these surfaces. These coupling

terms, which are usually referred to as radial and angular coupling, are di� cult to

calculate.

This article reviews a selection of the present author’ s recent work that illustrates

several strategies for obtaining the additional information that is necessary to treat

electronic excitation processes. Two main areas have been addressed. First, scattering

calculations have been extended to the realm of heavy atoms, particularly xenon. In

this case, there are so many electrons that the inner shells exhibit relativistic eŒects,

and the eŒects of the spin ± orbit operator can be quite large. Another complication in

this case is that the excited xenon atom has a structured core. That is, the core has

0144± 235X } 97 $12 ± 00 ’ 1997 Taylor & Francis Ltd

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



178 A . P . Hickman

orbital and spin angular momentum. This situation is more di� cult to handle than, for

example, the case of an excited alkali atom, which consists of a single electron in an

excited orbital outside a closed-shell core. Second, calculations have been performed

that provide detailed information about collisions in which the initial atoms are

spatially aligned. These calculations require a high level of accuracy of the underlying

ab-initio molecular potential curves, but they oŒer the opportunity to compare with

the most recent and precise experimental data.

Section 2 provides a brief sketch of the coupled-channel method. It is intended to

indicate how the quantities provided in electronic structure calculations are in-

corporated in a dynamics calculation. Section 3 discusses recent work on collisions of

excited Xe atoms with rare gases He and Ar. These collisions have an important eŒect

on the populations of various excited states of Xe in the atomic xenon laser. Section

4 summarizes recent calculations on the collisions of aligned Ca atoms with He. This

work was stimulated by the recent experiments of Leone’ s group at the University of

Colorado. By careful control of the polarizations of the exciting lasers, these

experiments permit the excitation of spatially aligned excited states. Section 5 contains

concluding remarks.

2. Outline of coupled-channel method

2.1. Form of the coupled equations

This section presents a brief sketch of the coupled-channel method. M any details

will be omitted since they can be determined from extensive material already in the

literature (Lester and Bernstein 1968, Gordon 1969, Smith 1969, Thorson 1969,

M cQuire and Kouri 1974, Pack 1974, Secrest 1975, Delos 1981). The intention is to

illustrate the structure of the scattering equations that must be solved and how the

various interatomic potential energy curves and coupling matrix elements are related

to what is normally available from an ab-initio electronic structure calculation. We

shall discuss a system that can be described by a Hamiltonian

H ¯ ®
ò #

2 l
~ #

R
 H

!
(R , r). (1)

The ® rst term describes the relative motion of the projectile and the target, and the

second term is the Hamiltonian of the collision partners, with R taken to be a ® xed

parameter. R is the relative coordinate of the two atoms, and we let r collectively

denote all the internal coordinates of the two atoms. In many cases, H
!
(R , r) is what

is called the electronic Hamiltonian, but for the present discussion we shall reserve that

term since we shall deal with systems in which H
!

also has a spin ± orbit term.

The task is to solve Schro$ dinger’ s equation for a ® xed positive value of the energy

E :

(H ® E ) w (R , r) ¯ 0. (2)

The following expansion for w is assumed :

w (R , r) ¯ 3
n

F
n
(R) v

n
(R , r). (3)

At this point, the expansion functions v
n
(R, r) are not speci® ed in detail. They are only

required to satisfy

& v
m

(R, r) v
n
(R , r) d $ r ¯ d

mn
. (4)
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Calculations of excited-atom collisions 179

W e now substitute the assumed form for w (R, r) (equation (3)) into equation (2). The

standard procedure is to multiply by v
m

(R , r) and integrate over r to obtain a set of

coupled equations for the functions F
n
(R). This procedure has a number of subtleties,

primarily because the expansion functions v
m

(R, r) are normally expressed in the

molecular frame. That is, the electronic coordinates r are most naturally expressed in

coordinates relative to the internuclear axis, and this axis rotates during the course of

the collision. This subject has been considered at length in the literature. The result

(Smith 1969) is that the set of coupled equations for F
n
(R) has the following form :

0 1
d #

dR #
 A(R)

d

dR
 U(R) 1 F(R) ¯ 0, (5)

where the elements of the matrix A(R) are determined (Smith 1969) from the terms

P(R)
mn

¯ & v
m

(R , r)
d

dR
v

n
(R , r) d $ r. (6)

These matrix elements constitute the radial coupling. They are a measure of how

rapidly the electronic con® gurations of the wavefunctions v
m

(R , r) change with R . If

the P(R)
mn

are small enough to be neglected then A(R) ¯ 0, and the ® rst derivative

term in equation (5) vanishes. The other terms in equation (5) are de® ned by

U(R)
mn

¯
2 l

ò #
[(E ® E

n
) d

mn
® V(R)

mn
® V

c
(R)

mn
], (7)

V(R)
mn

¯ & v
m

(R , r) H
!
(R , r) v

n
(R , r) d $ r (8)

and V
c
(R)

mn
are the centrifugal potential terms, which depend on the details of the

de® nition of the v
m

(R, r). In most of the present work, these terms can be derived

analytically (Walker and Light 1975).

The solution to equation (5) is represented as a matrix F(r). The elements of each

column correspond to the F
n
(R) in equation (3), and there are N linearly independent

solutions. The scattering matrix elements and cross-sections are determined from the

asymptotic form of the solution matrix.

2.2. Selection of expansion functions v
n
(R , r)

Several choices can be made for the expansion functions v
n
(R , r), and the choice

in¯ uences the form (5) of the coupled equations. In general, one can make speci® c

types of choices for v
n
(R , r) that will make certain terms in equation (5) vanish. The

most straightforward choice is to let the v
n
(R, r) be the eigenfunctions of the internal

Hamiltonian H
!
. That is

H
!
v

n
(R, r) ¯ E

n
(R) v

n
(R, r). (9)

For this choice the electronic coupling matrix V
mn

becomes diagonal : V
mn

¯ E
n
(R) d

mn
.

If H
!

is taken to be the electronic Hamiltonian for the scattering system, then the E
n
(R)

are just the adiabatic potential curves (as functions of R), and the v
n
(R , r) are the

corresponding electronic wavefunctions at each R . The v
n
(R, r) would be the electronic

wavefunctions normally calculated by ab-initio electronic structure techniques. Note

that these calculations are normally performed for several diŒerent values of the

parameter R .
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180 A . P . Hickman

This choice leads to the so-called adiabatic representation. At every R , the

potential curves are taken to have their adiabatic values, and the `potential coupling

terms ’ , that is, the oŒ-diagonal elements of V
mn

, are always zero. The dynamical

coupling that causes transitions between states comes from the radial coupling terms

P(R)
mn

(which determine A(R)) and from rotational coupling terms, which would be

included in the V
c
(R)

mn
. An issue with the adiabatic representation is that the matrix

elements P(R)
mn

are not routinely determined by electronic structure codes.

A second choice of the expansion functions is to select, by some criteria, v
n
(R , r)

that are in some sense `smooth ’ and have such a small dependence on R that the

P(R)
mn

terms can be neglected. This choice leads to the diabatic representation. The

advantage here is that the radial coupling terms, which may be di� cult to evaluate, are

not needed, and the diŒerential equation (5) is simpler in form because the ® rst-

derivative terms do not appear. The terms that induce the transitions arise because the

`smooth ’ v
n
(R , r) are not usually eigenfunctions of H

!
. In this case the potential

coupling matrix V(R)
mn

has oŒ-diagonal terms, which couple diŒerent electronic

states.

In a wide class of collision problems, there is a third choice for the expansion

coe� cients that oŒers advantages of both choices previously mentioned. One can use

directly the results of ab-initio calculations, but no d } dR matrix elements are explicitly

required. In collisions in which transitions among ® ne-structure levels are important,

it is often possible to write

H
!

¯ H
elec

(R)  H
so

. (10)

Here the internal Hamiltonian of the projectile± target system has been partitioned

into the standard electronic component, which depends explicitly on the internuclear

separation, plus a spin ± orbit term. For many important systems, it is justi® ed to

assume that H
so

is independent of R . In this case, we can begin with the adiabatic

potential curves for H
elec

(R) calculated using the full machinery of quantum chemistry

and then, with modest additional eŒort, include the eŒects of the spin ± orbit operator.

This method was originally developed by Cohen and Schneider (1974) and applied to

Ne $
#

and Ne+
#
. W ith some modi® cations, we have applied similar techniques to treat

collisions of Xe* with He and Ar (Hickman et al. 1992, 1993), and collisions of O( $ P
J
)

with O+ (Hickman et al. 1997). W e have also applied a similar method to ® ne-structure-

changing collisions of K(4 # P) and Rb(5 # P) with diatomic molecules (Hickman 1981,

1982) .

The key point is that the basis functions that describe the angular momentum

states of H
elec

(R) and those that describe the corresponding states of H
so

are related by

a unitary transformation that can be expressed in terms of Clebsch± Gordan

coe� cients (Cohen and Schneider 1974). For example, the states of H
elec

(R) are

usually expressed in an LS coupling scheme, and those of H
so

in jj coupling. A

standard example is an alkali atom A( # P
j
) and a rare gas X( " S

!
). Then the electronic

and spin angular momenta of AX are L ¯ 1 and S ¯ 1 } 2, which can couple to give

j ¯ 1 } 2 or j ¯ 3 } 2. The eigenfunctions of H
elec

(R) are best expressed in LS coupling.

They are written r LM
L

SM
S
ª and satisfy

© LM !L
SM !S

r H
elec

(R) r LM
L

SM
S
ª ¯ d

M !LM L
d

M !S M S
VK (R), (11)

where we use the notation K r M
L
r , and K ¯ 0 corresponds to a R state and K ¯ 1 to a

P state. In other words, one can use standard ab-initio codes to determine R and P

potential curves VR (R) and VP (R). The next step is to use the unitary transformation
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Calculations of excited-atom collisions 181

between LS and jj coupling to construct the eigenfunctions of H
so

. These eigen-

functions are denoted r LSjm ª and satisfy

r LSjm ª ¯ 3
M L

3
M S

© LM
L

SM
S
r jm ª r LM

L
SM

S
ª , (12)

H
so

r LSjm ª ¯ E
j
r LSjm ª , (13)

where © LM
L

SM
S
r jm ª is a Clebsch± Gordan coe� cient and the energies of the

spin± orbit levels E
j

are normally available from spectroscopy. W e now choose the

functions v
n
(R , r) to be the r LSjm ª . Using equations (11) ± (13), and noting that jm is

the state label, the potential coupling matrix elements can then be shown to be

V
j « m « , jm

(R) ¯ 3
M L

3
M S

© LM
L

SM
S
r j « m « ª © LM

L
SM

S
r jm ª VK (R). (14)

Normally, the radial coupling terms in the LS representation are negligible, and the

transformation between LS and jj coupling is independent of R . Then the matrix A(R)

in equation (5) is zero and the ® rst-derivative terms vanish.

This example shows that one can formulate the coupled-channel problem for ® ne-

structure collisions in a way that incorporates the adiabatic LS potential curves

determined by ab-initio calculations. The scattering equation (5) has no ® rst-derivative

terms, because all the state-to-state coupling terms arise from the oŒ-diagonal terms

in equation (14).

3. Collisions of Xe* with He and Ar

3.1. Introduction : role of collisions in the atom ic xenon laser

This section reviews our recent investigation of collisions of excited Xe with He and

Ar (Hickman et al. 1992, 1993). Such collisions play a crucial role in the kinetics of the

atomic Xe laser. This laser operates on several infrared transitions from 5d to 6p levels

of excited Xe. The laser transitions are indicated on the energy level diagram in ® gure

1. Although the details of the kinetics are not fully understood (Alford and Hays 1989,

Ohwa et al. 1989), the general scheme may be sketched as follows. The laser gas

mixture typically consists of a few per-cent Xe in a buŒer of He and Ar. Xe is ionized

by electron-beam pumping, or in some cases by nuclear pumping (Alford and Hays

1989) :
Xe ! Xe+  e. (15)

Various three-body association reactions are thought to lead to the formation of

ArXe+ :
Xe+  2Ar ! ArXe+  Ar. (16)

Various excited states of Xe can then be produced by dissociative recombination :

ArXe+  e ! Xe**  Ar. (17)

The distribution of excited states Xe** is not known. It is possible that some of the 5d

upper levels are produced directly by dissociative recombination, but probably more

likely that additional collisional and radiative processes convert more highly excited

Xe** to 5d levels. Xe+
#

may also be produced in the laser. It is thought (Ohwa et al.

1989) that dissociative recombination of Xe+
#

directly produces the lower laser levels

Xe*(6p). This process, which would degrade the population inversion, is suppressed in

practice by avoiding large concentrations of Xe.

Collisions of Xe** with buŒer gas atoms are important because these collisions

strongly in¯ uence the populations of the upper and lower laser levels. Experimental

studies originally observed a tremendous variation in speci® c state-to-state transition

rates. Because of this variation, adjusting the concentrations of He and Ar in the buŒer
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182 A . P . Hickman

Figure 1. Energy level diagram for atomic Xe. Energies are given relative to the ground state

Xe(5p ’ ). Both Xe+ ® ne-structure levels are shown. The inset shows selected 5d ! 6p

transitions for the atomic Xe laser.

Figure 2. The transition between LS and jj coupling shown in the style of Condon and
Shortley (1967). Scaled energy levels are presented as a function of a parameter related to

the relative strength of the spin± orbit and electrostatic terms in the atomic Hamiltonian.

The dotted lines correspond approximately to the coupling that exists in Ne and Xe.

gas lead to the selective quenching of the lower level of one or the other of the laser

transitions. The population inversion and hence the gain on speci® c transitions can

thereby be controlled. To exploit this situation, a detailed understanding of the state-

to-state collision processes was needed. However, the early studies found no simple

correlation with the degree of inelasticity or the mass or polarizability of the collision

partner. This situation suggested that a convincing theoretical analysis would require

high-quality excited-state potential curves and matrix elements, and a detailed

treatment of the dynamics.
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Calculations of excited-atom collisions 183

3.2. Potential cur Š es and matrix elements

Electronic structure calculations to determine excited-state potential curves for

systems such as XeHe and XeAr present special problems because of the large number

of inner-shell electrons, which exhibit relativistic eŒects, and the large spin ± orbit

interactions. Theoretical treatment of the dynamics is also a challenging problem. A

signi® cant physical feature is the structured core of the Xe atom. The Xe+(5p & ) core has

spin and orbital angular momenta that can participate in the collision. This complexity

is absent in the more frequently studied case of collision of excited alkali atoms with

rare gases, because the core of the alkali atom is a closed shell.

Applying the standard procedures discussed in section 2 to calculate potential

curves and matrix element, and then using the results in a coupled-channel calculation,

was not feasible for XeHe or XeAr. Calculating the adiabatic eigenfunctions v
n
(R , r)

for the Hamiltonian H
!
, including both inner-shell eŒects and the spin ± orbit operator,

is tractable using the eŒective core potentials developed by Pitzer and co-workers

(Pitzer and Winter 1988, Chang and Pitzer 1989), but this method had not been

extended to provide the radial coupling matrix elements. Another option would have

been to include the inner shell eŒects in the calculation of the eigenfunctions v
n
(R , r)

of the appropriate electronic Hamiltonian H
elec

(R), and then to add the spin ± orbit

eŒects afterwards by a subsequent diagonalization of H
elec

(R)  H
so

. In this case, the

extremely large size of the spin± orbit matrix elements for Xe led to concern that this

method would not be su� ciently accurate. The approach that we adopted was to

develop an analytic model that enabled us to combine the information determined

from ab-initio electronic structure calculations with available spectroscopic infor-

mation. The method allowed us to determine realistic potentials and coupling matrix

elements.

The importance of spin ± orbit eŒects in Xe can be illustrated by comparison with

the corresponding eŒects in lighter atoms. For example, the method of treating

H
elec

(R)  H
so

was originally applied to Ne $
#

. In this case the electronically excited

states of the molecule are aŒected by the spin± orbit splitting of the Ne+ core states 2p &

# P
J
, for J ¯ 1 } 2 and 3 } 2. This splitting is 782 cm Õ " . For excited states of XeHe and

XeAr, the corresponding quantity is the 10 537 cm Õ " splitting of the Xe+ core states 5p &

# P
J
. For the Ne systems, the spin ± orbit operator is a small eŒect that leads to some

perturbation of the LS states. For the Xe systems, the reorganization of the levels is

much stronger. We can consider the energy spectrum of an arti® cial atomic

Hamiltonian H « to illustrate quantitatively how these two systems diŒer. Consider

H « ¯ (2 ® q) H
elec

 qH
so

. (18)

For 0 % q % 2, we can calculate the eigenvalues of H « . The case q ¯ 0 corresponds to

pure LS coupling and q ¯ 2 corresponds to jj coupling. Figure 2 exhibits the relative

energy level spectrum obtained numerically for various values of the parameter q. (The

abscissa is a nonlinear function of q.) The dotted lines correspond approximately to

the case of Ne, which is not far from LS coupling. The case q ¯ 1, the physical Xe(5p &

6p) atom, corresponds to an intermediate angular-momentum coupling scheme. This

coupling scheme can be well described analytically by so-called pair coupling (Saraph

and Seaton 1977)

L
c
 S

c
¯ J

c
, J

c
 l ¯ K , K  s ¯ J, (19)

where L
c
, S

c
and J

c
refer to the orbital, spin and total angular momentum of the np &

# P
J

ion, s is the spin of the valence electron and J is the total angular momentum of the
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184 A . P . Hickman

Figure 3. Schematic illustration of the model used to formulate the interaction of an excited

Xe atom with a rare gas. The Xe+ core has an un® lled 5p electron orbital.

Figure 4. HeXe+ potentials.

atom. These quantum numbers are used in the conventional state labels n l [K ]J.

(Moore 1958). However, this analytic coupling scheme does not provide an adequate

description of the 6s and 5d levels. In particular, there is strong mixing of the 6s « and

lower 5d levels. For these levels, the numerically determined atomic eigenfunctions

exhibit a mixture of J
c
¯ 3 } 2 and J

c
¯ 1 } 2 basis functions.

The details of the calculations of the potential curves have appeared elsewhere

(Hickman et al. 1992). Here only the key points will be summarized. The ® rst step is to

perform ab-initio electronic structure calculations for Xe*Ar. These calculations used

the method developed by Pitzer and co-workers (Pitzer and W inter 1988, Chang and

Pitzer 1989). The eŒect of the inner-shell electrons on each orbital outside the core is
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Calculations of excited-atom collisions 185

Figure 5. ArXe+ potentials.

represented by a relativistic eŒective potential (REP). The REP for each orbital

depends on the angular momentum numbers l and j and is determined from a

numerical solution of the relativistic Dirac ± Fock equation. Then the REPs for two

orbitals having j ¯ l  1 } 2 and j ¯ l ® 1 } 2 are replaced by their weighted average and

diŒerence. The averaged REP depends only on l and can be easily implemented with

standard electronic codes. The diŒerence between the REPs provides an approximate

description of the true spin ± orbit interaction. The spin ± orbit operator is incorporated

in the calculation at the con® guration interaction (CI) level. The ® nal result is that

Xe*Ar can be treated as a 16-electron problem.

Further re® nement of the ab-initio calculations was necessary before proceeding

with the scattering calculations. Because the energy levels of Xe (including ® ne

structure) are so closely spaced ( D E E 100± 1500 cm Õ " ), particular attention was paid

to the accuracy of the asymptotic limits of the calculated potential curves. Although

accurate by conventional standards, the ab-initio calculations did not provide

asymptotes of the exceptional precision needed for the scattering calculations. In

addition, the ab-initio calculations provided only the adiabatic potential curves, that

is, the eigenvalues of the total Hamiltonian H
!

at each internuclear distance R . Also

necessary for a scattering calculation are the matrix elements coupling the various

potential curves. To insure accurate asymptotes, and to obtain the necessary coupling

matrix elements, we developed a method to re® ne and extend the ab-initio calculations.

The method was based on de® ning a model Hamiltonian. As illustrated in ® gure 3,

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



186 A . P . Hickman

Figure 6. Xe*He potentials for X ¯ 0+.

the physical scattering system is composed of an incident rare-gas atom and an excited

Xe atom, which consists of an excited electron and an ion core. H
!

was partitioned into

three terms that described the interactions between each pair of components of the full

system. The essential physical approximations in our method are the same as those

used successfully to describe ® ne-structure-changing collisions of excited # P alkali

atoms with rare gases (Reid 1973, Nikitin 1975). The only diŒerence in the present case

is that the spin and orbital angular momentum of the ion core are non-zero and must

be included in the electronic wavefunction.This extra feature can be fully incorporated

by treating the atomic portion of the model Hamiltonian (Xe+ ± Rg) as a two-electron

system, that is one valence electron and one core hole. The details of this method have

been presented by Condon and Shortley (1967). The result is that our model

Hamiltonian is based on the same physics used to treat simpler ® ne-structure-changing

collisions; only the algebra is more complicated.

The model Hamiltonian depends on a small set of physically sensible parameters.

Our strategy is to determine the parameters of the model Hamiltonian that ® t the ab-

initio potentials and then selectively to modify certain parameters that can be more

accurately determined from spectroscopy or other experimental data. The model

Hamiltonian is fully determined by the ® nal set of parameters, and it is possible to

determine both the adiabatic potential curves and the coupling matrix elements

needed for the scattering calculations.

Selected results are shown in ® gures 4± 9. Figures 4 and 5 show adiabatic potential
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Calculations of excited-atom collisions 187

Figure 7. ArXe* potentials for X ¯ O+. The marks near 4 A/ correspond to observed

vibrational levels.

curves determined by Hickman et al. (1992) for HeXe+ and ArXe+ respectively. M any

of the diŒerences in the potentials for excited states of Xe*He and Xe*Ar can be traced

to diŒerences in the well depths of the underlying ionic curves. Figures 6 and 7 show

the potentials for X ¯ 0+, and ® gure 8 and 9 show the potentials for X ¯ 0 Õ . These

particular curves have been selected because they illustrate several interesting results

of the scattering dynamics, which will be discussed in the next section.

3.3. Results of coupled-channel calculations

Coupled-channel calculations have been performed for Xe* collisions with He and

Ar. Inelastic cross-sections were calculated for all transitions among the 6s « , 6p and 5d

levels of Xe. (According to the usual notation, an unprimed level refers to a state

whose ion core is the ground state Xe+(5p & # P
$ / #

), and a primed level has the excited

core Xe+(5p & # P
" / #

).) The levels included in the calculation are included in the table.

The calculations for the  and ® symmetries each included 34 channels.

Calculations were performed for total energies spaced approximately at intervals

of 200 cm Õ " from 77 400 to 84 000 cm Õ " , where all energies are relative to the Xe(5p ’ )

ground state. W e determined cross-sections for transitions among the 6s « , 6p and 5d

levels. The results for those transitions found to be most important are shown in

® gures 10 and 11. These ® gures present our most detailed results. W e also used these

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



188 A . P . Hickman

Figure 8. Xe*He potentials for X ¯ 0 Õ .

cross-sections to obtain the transition rates at T ¯ 300 for all the level-to-level

transitions. The rates may be expressed as the thermal average of the velocity times the

cross-section :

k b ! b « (T ) ¯ © Š r b ! b « ª . (20)

The index b refers to the levels listed in the table. This formula can be conveniently

expressed as

k b ! b « (T ) ¯ Š a &
¢

!

r b ! b « E exp 0 ® E

kT 1 (kT ) Õ # dE , (21)

where Š a is the average thermal velocity :

Š a ¯ 0 8kT

p l 1 " / #
. (22)

The broken curves in ® gures 10 and 11 are proportional to the Maxwellian energy

distribution E exp ( ® E } kT ) at T ¯ 300 K and give an indication of the energy range

of the cross-section that contributes to the rate constants. The original work also

presented rate constants at T ¯ 800 K.

One of the major results of the investigation was the extreme variation in the

transition rate constants, depending on the speci® c states involved and the collision
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Calculations of excited-atom collisions 189

Levels included in the calculations.

No. Paschen Jl coupling
Energy ‹

(cm Õ " )

1 1s
$

6s « [1 } 2]
!

76 197 ± 292

2 1s
#

6s « [1 } 2]
"

77 185 ± 560
3 2p

" !
6p[1 } 2]

"
77 269 ± 649

4 2p
*

6p[5 } 2]
#

78 120 ± 303

5 2p
)

6p[5 } 2]
$

78 403 ± 562
6 2p

(
6p[3 } 2]

"
78 956 ± 538

7 2p
’

6p[3 } 2]
#

79 212 ± 970

8 3d
’

5d[1 } 2]
!

79 771 ± 798
9 3d

&
5d[1 } 2]

"
79 987 ± 160

10 2p
&

6p[1 } 2]
!

80 119 ± 474

11 3d !
%

5d[7 } 2]
%

80 197 ± 160
12 3d

$
5d[3 } 2]

#
80 323 ± 280

13 3d
%

5d[7 } 2]
$

80 970 ± 930

14 3d § 5d[5 } 2]
#

81 926 ± 040
15 3d !

"
5d[5 } 2]

$
82 430 ± 720

16 3d
#

5d[3 } 2]
"

83 890 ± 470

‹ From Moore (1958) ; energies are relative

to the Xe(5p ’ ) ground state.

Figure 9. Xe*Ar potentials for X ¯ 0 Õ .
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190 A . P . Hickman

Figure 10. (a) ± (l) Level-to-level cross-sections as a function of incident kinetic energy

calculated for Xe*  He for various indicated initial states. The broken lines are the
distributions of thermal energies used to calculate the rate constant at T ¯ 300 K. Only

the largest cross-sections are shown.
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Calculations of excited-atom collisions 191

Figure 11. (a) ± (l) Level-to-level cross-sections as a function of incident kinetic energy

calculated for Xe*  Ar for various indicated initial states. The broken lines are the
distributions of thermal energies used to calculate the rate constant at T ¯ 300 K. Only

the largest cross-sections are shown.
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192 A . P . Hickman

Figure 12. Total quenching rates of speci ® c excited states of Xe (a) by He and (b) by Ar, where
the shaded bars are the present calculations, and the symbols are various experiments :

( * ), Alford (1992) ; ( D ), Xu and Setser (1990) ; V , Bruce et al. (1990) ; ( Ð Ð ), Xu and

Setser (1990) ; ( ^ ), Inoue et al. (1984) ; ( ¬ ), Horiguchi et al. (1981).

partner. This variation is illustrated in ® gure 12. Rates for T ¯ 300 K are shown. For

each level, we have summed the rates for transitions to every other level (both higher

and lower in energy). The bars on the upper portion of the diagram correspond to the

theoretical calculations for He, and those on the lower portion to Ar. Experimental

points are shown in the same way. Total Ar quenching rates for the initial 1s
#

state

have not been measured, but the available level-to-level rates enable us to obtain a

lower bound. Figure 12 clearly indicates that some levels are quenched much more

eŒectively than others. There are also clearly many cases where a level is eŒectively

quenched by He and not by Ar, or where the opposite is true. On the whole, the

theoretical calculations exhibit quite good agreement with the available experimental

data. This agreement supports the reliability of the potential curves. Careful analysis

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Calculations of excited-atom collisions 193

of the scattering calculations based on these potentials provides insight into the

physics of the collision dynamics.

Two examples will serve to illustrate how the variation in the transition rate

constants are directly related to the behaviour of the potential curves. Consider the

total quenching rates for the initial states 2p
(

and 2p
’

shown in Fig. 12. The 2p
(

level

is eŒectively quenched by He but not by Ar, and the 2p
’

level exhibits the reverse

dependence. The potential curves and dynamics calculations provide a clear ex-

planation for this behaviour.

A fairly high rate (2 ± 4 ¬ 10 Õ " " cm $ s Õ " at T ¯ 300 K) for the transition of Xe

2p
’
(6p[3 } 2]

#
) to 1s

#
(6s « [1 } 2]

"
) induced by Ar was originally measured by Alford (1992).

Because of the large energy gap between these states, the mechanism was not obvious.

The potential curves in ® gure 7 provide an explanation. A sequence of two curve

crossings leads from the initial 2p
’

state to an intermediate state, and then to the 1s
#

state. The coupled-channel calculations yield a rate of 1 ¬ 10 Õ " " cm $ s Õ " at T ¯ 300 K,

which con® rms the two-crossings mechanism. The same transition is very weak if He

is the collision partner. The potential curves shown in ® gure 6 for XeHe con® rm that

the sequence of curve crossings is not available for this system. Ultimately, the strong

diŒerence in the two sets of potential curves can be traced back to the very diŒerent

well depths for the ion cores HeXe+ and ArXe+, as shown in ® gures 4 and 5.

State-to-state rates for the transition 2p
(
(6p[3 } 2]

"
) to 2p

)
(6p[5 } 2]

$
) induced by He

and by Ar exhibit the opposite behaviours. The He rate is high, 7 ± 2 ¬ 10 Õ " " cm $ s Õ "

(Alford 1992), and the Ar rate is much lower, 0 ± 03 ¬ 10 Õ " " cm $ s Õ " (Alford 1992) or

1 ± 0 ¬ 10 Õ " " cm $ s Õ " (Xu and Setser 1990). The scattering calculations yield a rate of

5 ± 5 ¬ 10 Õ " " cm $ s Õ " for He and 0 ± 01 ¬ 10 Õ " " cm $ s Õ " for Ar. The calculations indicate

that the mechanism for this transition is the avoided crossing in the X ¯ 0 Õ states near

4 A/ shown in ® gure 8 for He and ® gure 9 for Ar. The splitting at the crossing is

somewhat less for He. Our results indicate that the lighter, faster He tends to traverse

the coupling region diabatically. Conversely, the heavier, slower Ar tends to follow the

adiabatic curves. The higher thermal velocity of He therefore has a double eŒect ; it

accounts for a larger cross-section and also appears explicitly in the expression for the

rate constant (the thermal average of velocity ¬ cross-section).

We have reviewed detailed calculations of inelastic collisions of excited states of Xe

with He and Ar. The potential curves and scattering calculations provide a framework

for interpreting the extreme selectivity of the rates with respect to speci® c states and

collision partners observed in several recent experimental studies. The dynamics are

characterized by the interplay of diŒerent states of the excited atom’ s ionic core, and

by intermultiplet as well as intramultiplet mixing (e.g. 6p ! 5d transitions). The

calculations have provided an explanation for several puzzling experimental results,

such as the 2p
’
! 1s

#
transition in Ar, which proceeds by a double curve crossing, and

the diŒerence between He and Ar for the 2p
(
! 2p

)
transition, which depends on subtle

diŒerences in the potential curves and the mass diŒerence. In summary, the coupled-

channel calculations have provided an explanation for a large amount of experimental

data and demonstrate that collisions of this complexity can be quantitatively treated.

4. Collisions of aligned atoms : Ca(4s4f 1F)  He

This section reviews our recent extension of the coupled-channel method to

describe collisions of aligned atoms (Hickman et al. 1994). This work relies on ab-initio

molecular potential curves for the He± Ca system, and on radial coupling matrix

elements between these curves.
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194 A . P . Hickman

The extension of the coupled channel method has been driven by recent advances

in experimental techniques. In a series of elegant experiments (Hale et al. 1984, Bussert

et al. 1987, Robinson et al. 1990, Driessen et al. 1991a , b), Leone’ s group has

investigated collision process involving excited Ca atoms prepared initially in aligned

states. The results have revealed a strong dependence of speci® c inelastic cross-sections

on the initial alignment. This situation provides another example where one expects

that a convincing theoretical model will have to be based on accurate ab-initio

potential curves and sophisticated treatments of the scattering dynamics.

We consider the process

Ca(4s4f " F)  He ! Ca(4p # " S)  He. (23)

For this system, Driessen et al. (1991a, b) have performed the following experiment.

The initial Ca atom is prepared in a well de® ned state, whose quantization axis is

related to the directions of the polarizations of the lasers used to prepare the state.

Speci® cally, " F states (J ¯ 3) whose angular wavefunction is r J, 0 ª or [ r J, 1 ª ®
r J, ® 1 ª ] } 2 " / # can be prepared. The excited atoms interact with a beam of He atoms

incident at an angle b with respect to the quantization axis, and collisions cause

transitions to several ® nal Ca states. Transitions to the 4p # " S are detected by

monitoring ¯ uorescence from that state. The experimental signal is the " S ¯ uorescence

as a function of b ; this signal is proportional to a cross-section r ( b ) for process (1).

For the conventional analysis of scattering experiments, one usually de ® nes the z

axis to coincide with the initial velocity vector of the relative motion. From this point

of view, the information contained in r ( b ) could also be expressed as a set of cross-

sections r
M

, M ¯ 0, 1, ¼ , J, where r
M

is the projection of the initial total atomic

angular momentum J on the z axis. (Note that r
M

¯ r
Õ M

.) The experimental signal

r ( b ) is related to the r
M

by

r ( b ) ¯ 3
M

k
M

( b ) # r
M

. (24)

The coe� cients k
M

( b ) are determined from rotation matrix elements and from the

initial state angular wavefunction (Robinson et al. 1990). Driessen et al. (1991a, b)

have given explicit expressions relating r ( b ) to the r
M

for two diŒerent arrangements

of their laser polarizations. They have measured two sets of r
M

corresponding to two

slightly diŒerent energy distributions.

The ® rst step of the theoretical analysis was to perform the necessary electronic

structure calculations. Figure 13 shows some of the adiabatic potentials, which were

calculated (Krebs and Meyer 1993) at the CI level using the core polarization potential

of M ueller et al. (1984) and a basis set with 15s, 9p, 8d and 5f GTOs. The calculated

Ca excitation energies generally agree with experiment within about 150 cm Õ " , and the

spacings between the states near the " F state are correct to within 20 cm Õ " . For this

system, Krebs and M eyer (1993) calculated radial coupling matrix elements by

numerical diŒerentiation. The most important of these couplings are also shown in

® gure 13. Angular coupling terms (the matrix elements of L
x

and L
y
) were also

calculated.

Analysis of the adiabatic curves in ® gure 13 indicates two possible transition

mechanisms connecting the F and the S levels : radial coupling in the range (5± 8)a
!

between the two R potentials, and rotational coupling in the same region between the

F P and the S R potentials. The latter coupling arises because for R near 6a
!

or 7a
!
, the

adiabatic R state correlating to the " S asymptote contains some " F character.
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Calculations of excited-atom collisions 195

Figure 13. Selected ab-initio adiabatic potential curves for CaHe, for R ( Ð Ð ), P ( ± ± ± ),

^ ( Ð Ð Ð ) and u ( [ [ [ ) symmetry. The inset at lower left shows © F P r L
x
r S R ª ( ± ± ± ),

which governs the rotational coupling, and the radial coupling term © F R r d } dR r S R ª
( Ð Ð ).

The scattering equations were solved in the diabatic representation, in order to use

existing computer scattering codes. The ab-initio calculations of Krebs and Meyer

(1993) provided adiabatic potential curves and radial and rotational coupling matrix

elements between them. A transformation of the ab-initio calculations was imple-

mented by solving the diŒerential equation that related C(R), the transformation

between the adiabatic and diabatic representations, to the matrix elements of the d } dR

operator. One has

dC t

dR
¯ P tC t, (25)

where C is the transformation that diagonalizes the set of v
n
(R , r) used to de® ne a

diabatic representation, thereby providing adiabatic eigenfunctions, and P(R)
mn

is the

radial coupling between adiabatic eigenstates v
m

(R , r) and v
n
(R , r) de® ned in equation

(6). Careful attention had to be paid to the diabatization procedure in order to ensure

correct signs for the radial coupling terms, since arbitrary sign changes could occur

between one value of R and the next.

The cross-sections are de® ned in terms of the T matrix elements, which are

determined by solving equation (5) for the appropriate coupling terms. Specifying J

and M of the initial Ca state, summing the cross-sections over all projections M « of the

® nal level, and letting a specify all the other quantum numbers, one obtains

r
M

¯
p

k #
3
P

(2P  1) 3
N « ) 3 N iN © J M P, ® M r N0 ª T P

a « J « N « , a JN ) # , (26)

where N is the orbital angular momentum of the relative motion of Ca and He,

P ¯ J  N , and © J M P , ® M r N0 ª is a Clebsch± Gordan coe� cient.

Figure 14 shows the calculated cross-sections r
M

for collision energies
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196 A . P . Hickman

Figure 14. Calculated cross-sections r
M

. (a) The collision energy distributions are shown for

the initial states r J, 0 ª ( ± [ ± ) and ( r J, 1 ª ® r J, ® 1 ª ) } 2 " / # ( ± ± ± ). (b) The solid line is the
average cross-section.

200± 1100 cm Õ " relative to the initial state Ca(4s4f " F
$
). The results shown are based on

including the F and S levels ; additional channels did not change the results

signi® cantly. The most striking feature of these results is the strong energy dependence

of r
!

and r
"
, which contrasts with the smooth behaviour of the cross-section averaged

over M . The origin of the oscillations is discussed below. W e convoluted the cross-

sections with the experimental energy distributions (Driessen et al. 1991a , b). (We used

a peak at 613 cm Õ " and a full width at half-maximum (FW HM ) of 210 cm Õ " for the r J,

0 ª state and a peak at 540 cm Õ " and a FWHM of 160 cm Õ " for the [ r J, 1 ª ® r J,

® 1 ª ] } 2 " / # state.) The convoluted cross-sections are compared with the corresponding

experimental values in ® gure 15. The calculations agree with experiment with respect

to the relative size of r
!

and r
"
, compared with r

#
and r

$
, but the ordering of r

!
and

r
"

is reversed. We suspect that this discrepancy is related to the oscillatory behaviour

of r
!

and r
"
, which we interpret as an interference phenomenon depending sensitively

on the details of the potentials.

To understand the origin of the oscillations, we examined the collision dynamics in

more detail using a semiclassical model. The details of this model have been presented

in the literature (Hickman et al. 1994). The crucial point is the evolution of the initial

states of ® xed M in the space-® xed frame into speci® c molecular states labelled by K

( R , P , etc.) in the body-® xed frame. For a particular collision with a ® xed impact

parameter, there is an amplitude for the atoms to `choose ’ the R or the P state. For

each of these two states, there is a possible mechanism for a transition to the ® nal " S
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Calculations of excited-atom collisions 197

Figure 15. Comparison of energy-averaged cross-sections with experiment (Driessen et al.

1991a, b) for the initial state r J, 0 ª .

state. The oscillations in the cross-section arise from the interference between these

two alternative mechanisms. The process is analogous to well known curve-crossing

models that lead to oscillations in the angular cross-section due to the interference of

two possible trajectories that lead to the same scattering angle. W hat is remarkable in

the present case is that the oscillations persist in the total energy, after integrating over

the angular cross-section.

The coupled-channel calculations of the partial cross-sections for M ¯ 0 to " S

transitions exhibited a complicated oscillatory dependence on energy and impact

parameter. As further evidence for the interference eŒect, we note that suppressing the

rotational coupling between the " F P curve and the " S R curve eliminates the

oscillations in the energy dependence.

The interference eŒect may also be related to the long-range barrier in the " F R

potential shown in ® gure 13. There is a signi® cant phase diŒerence between trajectories

that follow the R curve and surmount the barrier, and those that follow the ¯ at P

curve. A model calculation attributing the phase diŒerence to this eŒect matches the

oscillatory behaviour of r
!

very well. There is another eŒect of the barrier. At collision

energies E less than the barrier height (about 350 cm Õ " ), trajectories that follow the R

state will generally not penetrate to the region at small R where transitions to the " S

state can take place. W e expect r
!

to be strongly suppressed then, because the M ¯ 0

initial states evolve preferentially into R states. Figure 14 con® rms that for

E ! 350 cm Õ " , r
"

is the largest partial cross-section, and can be twice to three times

larger than the other r
M

. W e also note in ® gure 14 that the oscillations in r
!

begin at

350± 400 cm Õ " , the energy range at which trajectories that begin in the M ¯ 0 state can

® rst surmount the barrier. The quantum-chemical results revealed evidence of orbiting

resonances in this energy range.
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198 A . P . Hickman

In conclusion, we have presented a detailed analysis of collisions of aligned Ca(4s4f

" F) atoms with He. The key results are prominent oscillations in the energy dependence

of r
!

and r
"

and strong enhancement of r
"

at low collision energies.

5. Concluding remarks

Several methods have been reviewed for implementing coupled-channel calcu-

lations of collisions involving electronic excitation processes. The central problem that

must be solved to treat these processes is the determination of the appropriate coupling

terms between the electronic states. Various methods have been discussed for doing

this. For the collisions involving heavy atoms, a sophisticated model for the angular

momentum coupling was developed that separated the electronic and spin ± orbit

terms. The electronic coupling terms were determined from ab-initio calculations that

invoked eŒective core potentials to treat inner-shell electrons. Spin ± orbit coupling

terms of spectroscopic accuracy could also be incorporated in the analysis. For the

collisions involving aligned atoms, radial coupling terms were available from ab-initio

calculations.
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